Principal Component Analysis and Fisher Linear Discriminant Analysis
ثبت نشده
چکیده
Principal Components Analysis (PCA) is an appearance based technique used widely for the dimensionality reduction and it records a great performance in face recognition. PCA based approaches typically include two phases: training and classification (Draper et al 2003). In the training phase, an Eigen space is established from the training samples using PCA and the training face images are mapped to the Eigen space for classification. In the classification phase, an input face is projected to the same Eigen space and is classified by an appropriate classifier.
منابع مشابه
Feature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملFacial Expression Recognition Based on Local Binary Patterns and Local Fisher Discriminant Analysis
Automatic facial expression recognition is an interesting and challenging subject in signal processing, pattern recognition, artificial intelligence, etc. In this paper, a new method of facial expression recognition based on local binary patterns (LBP) and local Fisher discriminant analysis (LFDA) is presented. The LBP features are firstly extracted from the original facial expression images. T...
متن کاملEssence of kernel Fisher discriminant: KPCA plus LDA
In this paper, the method of kernel Fisher discriminant (KFD) is analyzed and its nature is revealed, i.e., KFD is equivalent to kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). Based on this result, a more transparent KFD algorithm is proposed. That is, KPCA is ;rst performed and then LDA is used for a second feature extraction in the KPCA-transformed ...
متن کاملDiscrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques
ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...
متن کاملA Gabor Feature Based Horizontal and Vertical Discriminant for Face Verification
In this paper, a novel discriminant analysis method for a Gabor-based image feature extraction and representation is proposed and then implemented. The horizontal and vertical two-dimensional principal component analysis (HV-2DPCA) is directly applied to a Gabor face to reduce the redundant information and preserve a bi-directional characteristic as well. It is followed by an enhanced Fisher li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014